
Latent Space Geometry Search for Neural Networks
via Random Walks on Product Manifolds

Adam Mehdi
Columbia University

adm2243@columbia.edu

Anupam Bhakta
Columbia University

ab5494@columbia.edu

Kevin Z. Qiu
Columbia University

kzq2000@columbia.edu

Abstract

This paper investigates the impact of latent space geometry on the performance of
neural networks. We aim to identify the optimal latent geometry for a given task
by searching over a graph space defined on product manifolds, where each node
represents a unique latent space geometry and edges are weighted by the inverse of a
modified Gromov-Hausdorff distance. Our approach follows Sáez de Ocáriz Borde
et al. [2024], but we diverge in the choice of graph search method, opting for
random walks instead of Bayesian optimization. We leverage random walks
and their connections to spectral clustering to explore and understand the graph
search space. Experiments on autoencoders trained on the MNIST dataset [Deng,
2012] evaluate the effectiveness of different random walk techniques, including
weighted versus unweighted walks and nonbacktracking versus backtracking walks.
The results demonstrate that backtracking walks make a noticeable difference in
performance compared to a naive random walk, particularly over a smaller number
of iterations. There is, however, less of a difference between the performance of
both methods using weighted and unweighted edges in the search space. The code
for the method and experiments is provided on our GitHub.

1 Introduction

Neural networks have emerged as a fundamental tool in machine learning. At the core of their
functionality lies the concept of latent space, an abstract, lower-dimensional space where data is
mapped by the network. This latent space captures essential features and relationships within the
data, facilitating tasks such as classification, regression, and generation [Goodfellow et al., 2016].
Neural networks transform high-dimensional input data into a compressed and abstract representation
in the latent space, discarding noise and irrelevant details while preserving meaningful patterns and
structures [Hinton and Salakhutdinov, 2006].

A central dogma of geometric data analysis is that data inherently possesses geometry [Rabadán and
Blumberg, 2019]. For instance, hierarchical structures found in phylogenetic trees can be effectively
represented using hyperbolic geometry, which preserves generational information without clutter
[Billera et al., 2001]. Similarly, cyclic data in time series can be captured by spherical geometry,
which maintains rotational symmetries [Bronstein et al., 2006]. Selecting an appropriate latent space
geometry based on these intrinsic properties of data can significantly enhance the performance of
machine learning models across various domains [Shukla et al., 2018]. By aligning the latent space
geometry with the data’s intrinsic geometry, more efficient representations can be achieved, leading

Preprint. Under review.

https://github.com/ae-bii/nlgm-implementation

to improved model generalization without relying on increased network capacity. This approach
alleviates issues related to over-parameterization and feature redundancy [Fei et al., 2023].

Despite the importance of aligning latent space geometry with data geometry, identifying the inherent
geometry of data remains a challenging task. Current methods often resort to trying random ge-
ometries, a process typically performed heuristically and involving a random search [Hauberg et al.,
2012]. This approach lacks a principled way of searching for an optimal geometry that best captures
the intrinsic properties of the data. In this paper, we adapt the work of Sáez de Ocáriz Borde et al.
[2024], who introduced a framework for neural latent geometry search. While they favor Bayesian
optimization as the search strategy, we opt for random walks due to their geometric interpretations
and simpler exploration of the search space.

Our contribution lies in the implementation of a principled approach for searching an optimal latent
space geometry. We construct a graph search space over product manifolds, where the weights
between manifolds are determined by the inverse Gromov-Hausdorff distance. To efficiently compute
the distances between arbitrary product manifolds, we utilize precomputed values for 2-dimensional
model spaces and employ the Hungarian algorithm for optimal matching. We define several search
methods over the graph search space, including an unweighted random walk over the pruned graph,
a random walk with transition probabilities weighted by the inverse modified Gromov-Hausdorff
distance, and a random walk with backtracking as an approximation to discretized stochastic gradient
descent. We evaluate these search methods using an image autoencoder on the MNIST dataset.

2 Background

2.1 Product Manifolds

A product manifold is a mathematical structure formed by combining two or more simpler manifolds
through the Cartesian product operation. Given two manifolds M and N, their product manifold,
denoted as M × N, is the set of all ordered pairs (m, n), where m is a point from manifold M and n is
a point from manifold N. The dimensionality of the product manifold is the sum of the dimensions
of its component manifolds. Product manifolds inherit important properties from their component
manifolds, such as the exponential map and geodesic distance. The exponential map of a product
manifold is a diffeomorphism between its tangent space and the manifold itself, allowing for a locally
linear structure. The geodesic distance on a product manifold can be computed using the geodesic
distances of its component manifolds [Lee and Lee, 2012], as described by the equation:

d(M×N)((m1, n1), (m2, n2)) =
√

dM (m1,m2)2 + dN (n1, n2)2. (1)

The use of product manifolds allows for the construction of more complex topological and geometric
structures by combining simpler, well-understood manifolds, such as those with hyperbolic, Euclidean,
and spherical geometries. These component manifolds serve as building blocks, each with its
unique properties and advantages. Hyperbolic manifolds, with their constant negative curvature, are
particularly useful for modeling hierarchical structures or networks exhibiting exponential growth
properties. Euclidean manifolds are applicable to spaces where straight-line distance is directly
relevant. Spherical manifolds, with their constant positive curvature, are suitable for representing
closed, bounded systems or cyclical data. However, we note that not all manifold types or topological
spaces can be neatly decomposed into or represented as product manifolds, such as those with
twisting or nonuniform curvature [Bronstein et al., 2017]. The product manifold is used as an efficient
representation for searching through a large class of manifolds [Sáez de Ocáriz Borde et al., 2024].

2.2 Gromov-Haustorff Distance

The Gromov-Hausdorff distance is a metric that allows for the comparison of metric spaces, even
when they are not embedded in the same ambient space. It extends the concept of the Hausdorff
distance, which is limited to comparing subsets within the same metric space. Given two metric
spaces (X, dX) and (Y, dY), the Hausdorff distance between subsets A,B ⊆ X is defined as:

dH(A,B) = max(min
ϵ

(B ⊆ Aϵ),min
ϵ
(A ⊆ Bϵ)) (2)

where Aϵ and Bϵ denote the ϵ-fattening of sets A and B, respectively. The Hausdorff distance is the
minimum ϵ such that the ϵ-fattening of each set covers the other set. While the Hausdorff distance is

2

Table 1: Exponential map and distance functions for different geometries. xp represents the base
point on the manifold, v is the tangent vector, and KS and KH are the curvatures of the spherical and
hyperbolic manifolds, respectively.

Geometry Exponential Map expxp
(v) Distance Function d(x, y)

Euclidean v |x− y|
Spherical cos(

√
KS |v|)xp + sin(

√
KS |v|) v√

KS |v|
arccos(KS⟨x,y⟩)√

KS

Hyperbolic cosh(
√
−KH |v|)xp + sinh(

√
−KH |v|) v√

−KH |v|
arccosh(KH⟨x,y⟩)√

−KH

a metric, it is restricted to comparing subsets within the same metric space and is sensitive to rigid
transformations, such as isometries.

To overcome these limitations, the Gromov-Hausdorff distance is used:

dGH((X, dX), (Y, dY)) = inf
θ1:X→Z,θ2:Y→Z

dH(θ1(X), θ2(Y)) (3)

where θ1 and θ2 are isometries mapping X and Y into a common metric space Z. The Gromov-
Hausdorff distance finds the infimum over all possible isometric embeddings of X and Y into Z, and
then computes the Hausdorff distance between the embedded spaces.

In practice, computing the Gromov-Hausdorff distance can be challenging, so approximations are
used. In addition, when comparing manifolds that are not defined over the same ambient space such
as product manifolds with different signatures, the manifolds must be mapped to a common ambient
space E6n−6, where n is the maximum dimension of the two product spaces, before applying the
Gromov-Hausdorff distance [de Ocariz Borde et al., 2023].

3 Method

3.1 Enforcing Latent Geometry

To enforce a specific geometry on the latent space, we utilize the exponential map, a function that
maps a tangent vector from the tangent space at a point on a manifold to a point on the manifold itself.
The exponential map preserves the local structure of the manifold, allowing us to map a Euclidean
latent vector to a point on the desired manifold. By projecting the latent vector onto the manifold
using the exponential map, we effectively force the latent representation to lie on the manifold,
causing the latent space to inherit the geometric properties of the manifold, such as its curvature and
distance metric [Nickel and Kiela, 2017].

The exponential map equations, as presented in Table 1, provide a differentiable means of projecting
latent vectors onto the desired manifold, thus enforcing the geometric properties of the manifold
on the latent space. This differentiability is necessary for gradient-based optimization such as
backpropagation Plaut and Hinton [1987]. The distance functions, also summarized in Table 1, allow
for the computation of geodesic distances between points on the manifold, which is useful for various
tasks such as similarity measurement and clustering.

The intuition behind why projecting the latent vector is sufficient to assume the desired geometry
stems from the fact that the projection operation constrains the latent representation to the manifold.
This constraint ensures that the latent space adheres to the geometric properties of the manifold, such
as the curvature and distance metric, which in turn influences the model’s learning and generalization
capabilities [Nickel and Kiela, 2017].

While our current work focuses on exploring latent geometries for image autoencoders, the concept
of enforcing specific geometries on the latent space can be extended to various other tasks and
domains. In natural language processing, word or sentence embeddings can be constrained to lie
on a manifold by applying the exponential map to the latent vectors, similar to our approach in
image autoencoders. This projection onto a manifold with appropriate geometric properties could
potentially capture the underlying semantic structure more effectively [Jawanpuria et al., 2019]. In
graph representation learning, hyperbolic or spherical geometry can be enforced on the latent space
by using the corresponding exponential maps during the learning process [Hamilton et al., 2017]. For

3

Table 2: Gromov-Haustorff distances between different model spaces.
Model Space 1 Model Space 2 Gromov-Hausdorff Distance

E2 S2 0.23
E2 H2 0.77
S2 H2 0.84

generative models, such as variational autoencoders or generative adversarial networks, the choice of
latent geometry can be enforced by modifying the prior distribution and the corresponding sampling
techniques to match the desired manifold [Chadebec and Allassonnière, 2022]. Investigating the
impact of enforcing latent geometries on different tasks is an future research which may lead to
improved representations across a wide range of applications.

3.2 Defining Graph Search Space

To define the search space for the optimal latent geometry, we construct a graph where each node
represents a product manifold, and the edges between nodes are weighted by the inverse Gromov-
Haustorff distance between the corresponding product manifolds. The distances between the base
2-dimensional model spaces (E2,H2,S2 are obtained from de Ocariz Borde et al. [2023], which
provides a modified computation of the Gromov-Hausdorff distance. The method involves sampling
distributed points from the model spaces, mapping them to E6n−6, which has been shown to be able
to hold manifolds in En,Sn, and Hn without distortion, and applying the Gromov-Hausdorff distance
in this higher-dimensional space de Ocariz Borde et al. [2023]. Due to the intricate mathematical
specifications required to map manifolds hyperbolic space to a higher-dimensional Euclidean space,
we directly use the distance values for the 2-dimensional model spaces. We extend the methodology
to higher-dimensional product manifolds by combining multiple 2-dimensional model spaces as
components. For example, a four-dimensional spherical space S4 is represented as the product
manifold S2 × S2.

In addition to restricting model space dimensionality to 2, edges are only defined between product
manifolds that differ in a single model space component, ensuring a consistent and structured search
space. For instance, E2 ×H2 and E2 × S2 would be connected with an edge weighted by the inverse
of the Gromov-Hausdorff distance between H2 and S2 respectively, while S2×S2 and E2×E2 would
have no direct connection in the graph [Sáez de Ocáriz Borde et al., 2024]. In this formulation, the
graph search space is defined over product manifolds with the same number of component manifolds
np. These assumptions allow us to compute the distance between arbitrary product manifolds rapidly
using the table of Gromov-Haustorff distances in 2 and the Hungarian algorithm as follows.

The computation begins by checking if the two product manifolds have the same number of component
manifolds. If not, a distance of 0 is assigned between them, indicating no direct connection. Next,
the types of component manifolds in each product manifold are identified, such as Euclidean (E2),
spherical (S2), or hyperbolic (H2) in a 2-dimensional case. A cost matrix is then created based on the
Gromov-Hausdorff distances between the component manifold types, which can be obtained from a
pre-computed table like Table 2. The Hungarian algorithm is applied to the cost matrix to find the
minimum weight perfect matching between the component manifolds of the two product manifolds,
efficiently finding the optimal alignment that minimizes the total distance between the matched pairs.
The weight between the two product manifolds is calculated as the sum of the distances between
the optimally matched component manifolds, and the inverse of this weight is returned as the final
distance between the product manifolds. Taking the inverse ensures that a higher weight corresponds
to a smaller distance and vice versa.

We can define the total size of the graph search space as an expression of the number of distinct
model spaces (ns) and the total number of model spaces used to form the product manifold (np):

s =

np∑
i=1

(
ns + i− 1

i

)
. (4)

This formula is derived from the concept of combinations with repetition, where the order of selection
does not matter, and each model space can be chosen multiple times. The binomial coefficient

4

(
ns+i−1

i

)
counts the number of ways to choose i model spaces from a set of ns distinct model spaces,

allowing for repetition.

The size of the graph search space grows exponentially as the number of model spaces (np) increases.
Consequently, practical limitations often restrict the search to smaller latent spaces to maintain
feasibility. In this work, we restrict np = 5, which limits us to latent dimension 10. Future work may
focus on alleviating the combinatorial explosion of the graph search space or principled heuristics of
identifying fruitful regions of the graph search space.

3.3 Searching over Graph Search Space

To explore the graph search space and identify the optimal latent geometry, we employ random walks,
a simple yet effective method to traverse the graph with geometric interpretations [Göbel and Jagers,
1974]. In this approach, we define the performance of a product manifold as a metric evaluated on
a validation set for a model trained with the given latent geometry. The performance of a random
walk is the minimum of such evaluations on the geometries that make it up. We note that [Sáez de
Ocáriz Borde et al., 2024] use Bayesian Optimization to traverse the graph search space. However,
this approach, which works by building a probabilistic surrogate model and strategically sampling
points based on acquisition functions, to be so complex as to detract from a geometric understanding
of the graph search space [Frazier, 2018]. Random walks on graphs have been shown to have a close
connection to spectral clustering [Von Luxburg, 2007]. In spectral clustering, the goal is to find a
partition of the graph G = (V,E) such that the random walk stays within the same cluster for a long
time and rarely jumps between clusters. This intuition aligns well with the idea of finding a balanced
partition with a low cut, as such a partition would limit the opportunities for the random walk to
transition between clusters [Ding et al., 2001].

To perform random walks on our graph search space, we first normalize the inverse Gromov-Hausdorff
weighted adjacency matrix A into a stochastic transition matrix P . The transition probability pij of
jumping from a product manifold i to a product manifold j in one step is proportional to the inverse
of their Gromov-Hausdorff distance, i.e., pij = wij/di, where wij is the inverse Gromov-Hausdorff
distance and di is the degree of node i, defined as di =

∑
j wij . This normalization ensures that the

random walk is more likely to step to closer product manifolds in the graph search space, enforcing
that long distances do not matter.

The relationship between random walks and spectral clustering provides a geometric interpretation
of the random walk process on our graph search space. The transition matrix P is closely related
to the graph Laplacian L = D − A, where D is the diagonal degree matrix with Dii = di. The
spectrum of L, consisting of its eigenvalues and corresponding eigenvectors, encodes the geometry of
the graph G. In particular, the multiplicity of the eigenvalue λ = 0 equals the number of connected
components in the graph [Geometric Data Analysis Class Notes]. By normalizing the adjacency
matrix based on the inverse Gromov-Hausdorff distances, we essentially encourage the random walk
to stay within clusters of product manifolds that are geometrically similar. In our experiments, we
sample from different product manifolds as a starting point to encourage the random walk process to
explore different regions of the graph search space. We expect performance within clusters to differ
less relative to performance across clusters.

Inspired by stochastic gradient descent, we also experiment with random walk with backtracking
[Amari, 1993]. If a random walk step leads to a decrease in performance, we backtrack to the previous
product manifold and step in a new direction. This process can be seen as a discrete approximation to
stochastic gradient descent, where instead of always moving in the direction of steepest descent, we
move in any direction that decreases objective function [Stephan et al., 2017]. However, this approach
can get stuck in local minima if a geometry is the best-performing among its immediate neighbors
in the graph. The effectiveness of random walk with backtracking relies on the assumption that the
graph search space is smooth and the performance metric decreases gradually [Andradóttir, 1995].
We hypothesize that the performance of the random walk with backtracking method will provide
insights into the geometric properties of the graph search space with respect to model performance
on a given dataset.

5

Figure 1: Sample graph search spaces for ns = 3 and different values of np. Edge colors denote the
connectivity such that grey is when dimensions of product spaces differ by 1, red is for dGH(E2,H2),
blue is for dGH(S2,H2), and black is for dGH(E2,S2).

(a) np = 4. (b) np = 7.

(c) np = 10. (d) np = 13.

(e) np = 16. (f) np = 20.

6

4 Experiments

We consider the task of image reconstruction on real-world datasets. To do this, we employ the
autoencoder method described in Sáez de Ocáriz Borde et al. [2024] where the latent vector output of
the encoder is projected onto the selected product space before reconstruction by the decoder. We
evaluate the performance of a particular latent geometry by the reconstruction loss on the testing set
after the autoencoder completes training.

We focus primarily on the MNIST and KMNIST datasets where we consider a search space of of
np = 5 model spaces, each with dimensionality 2. This means the latent space has dimensionality 10.

4.1 Model Architecture

The autoencoder architecture used in our experiments consists of an encoder and a decoder. The
encoder takes a 28x28 grayscale image as input and applies a series of convolutional layers, each
followed by batch normalization and ReLU activation. For replicability, the specific architecture
details are provided in 2.

The latent dimension (latent_dim) is determined by the number and dimensionality of the model
spaces used in the product space. Before passing the latent representation to the decoder, it is
projected onto the selected product space using its exponential map. This stereographic projection
allows the latent space to inherit the geometric properties of the candidate manifold, enabling the
exploration of different latent geometries during the search process.

Autoencoder Architecture Details

Encoder:
• Conv2d(1, 20, kernel_size=3, padding=1) - BatchNorm2d(20) - ReLU
• Conv2d(20, 20, kernel_size=3, padding=1) - BatchNorm2d(20) - ReLU
• Conv2d(20, 20, kernel_size=3, stride=2, padding=1) - BatchNorm2d(20) - ReLU
• Conv2d(20, 20, kernel_size=3, padding=1) - BatchNorm2d(20) - ReLU
• Conv2d(20, 20, kernel_size=3, padding=1) - BatchNorm2d(20) - ReLU
• Conv2d(20, 2, kernel_size=3, padding=1) - BatchNorm2d(2) - ReLU
• AdaptiveAvgPool2d(1)
• Flatten()

Decoder:
• Linear(2, 280) - ReLU
• Unflatten(1, (20, 7, 7))
• ConvTranspose2d(20, 20, kernel_size=3, stride=2, padding=1, output_padding=1) -

ReLU - BatchNorm2d(20)
• ConvTranspose2d(20, 20, kernel_size=3, stride=2, padding=1, output_padding=1) -

ReLU - BatchNorm2d(20)
• Conv2d(20, 1, kernel_size=3, padding=1) - Sigmoid

Geometric Autoencoder:
• Encoder
• ExponentialMap(product_manifold, latent_dim)
• Decoder

Figure 2: Detailed architecture of the geometric autoencoder used in experiments.

7

Figure 3: Plot of losses for different geometries using random search through the combinatorial space
of product manifolds. We use np = 5, and each product manifold is represented as a tuple with each
model space’s curvature. For instance, (−1, 0, 0, 0, 1) represents H2 × E2 × E2 × E2 × S2

.

4.2 MNIST

We conduct experiments on the MNIST dataset, which consists of 70,000 grayscale images of
handwritten digits (60,000 for training and 10,000 for testing). The data preprocessing pipeline
involves converting the images to tensors and rescaling the pixel values from the range [0, 255] to
[0, 1]. Subsequently, the tensors are normalized by centering the data distribution around zero mean
and scaling it to unit variance, using the mean and standard deviation values specific to the MNIST
dataset (0.1307 and 0.3081, respectively). The entire training dataset and the full test dataset are used
to create data loaders with a batch size of 64. The latent space dimensionality is determined by the
number of component manifolds np = 5, resulting in a latent dimensionality of 10. The model is
trained for 10 epochs with the Adam optimizer with a learning rate of 0.001 [Kingma and Ba, 2014].
Future work may consider approximating the performance metric on the validation set with speed of
convergence of the model for the first few steps, which has been shown to be a reasonable indicator
of performance [Smith, 2018].

Figure 3 presents the training loss trajectories for different latent geometries when trained on the
MNIST dataset. The results confirm that the choice of latent geometry has a significant impact on the
model’s performance, as evidenced by the varying convergence patterns and final loss values. Notably,
the trajectory corresponding to the geometry H2 × E2 × E2 × E2 × E2 converged to the lowest
loss among the evaluated geometries, suggesting that this particular combination of hyperbolic and
Euclidean spaces is well-suited for capturing the intrinsic structure of the MNIST dataset relative to
the other product manifolds evaluated. We use reconstruction loss on the validation set for subsequent
experiments.

4.3 Unweighted vs Inverse dGH -Weighted Random Walk

We compare the performance of unweighted and inverse dGH -weighted random walks on the graph
search space. In the unweighted case, the transition probabilities between product manifolds are
uniform, meaning that the random walk is equally likely to step to any neighboring manifold,
regardless of their geometric similarity. In contrast, the inverse dGH -weighted random walk assigns
higher transition probabilities to geometrically similar manifolds.

8

Figure 4: Experimental results: Comparison of losses over 20 iterations of random walk over graph
for naive and backtracking searches.

(a) All losses using naive random walk. (b) Minimum losses using naive random walk.

(c) All losses using backtracking random walk. (d) Minimum losses using backtracking random walk.

(e) Naive vs backtracking random walk.

9

From our experiments, we observed that the graph weighted using dGH performed more favorably
than the unweighted graph. This result points to the work done by Sáez de Ocáriz Borde et al.
[2024] being valid for this scenario. We can also notice that in some of the iterations in Figure 4a,
the unweighted version had lower losses compared to the weighted one. We hypothesize that it is
due to the weighted approach getting stuck in a cluster of product manifolds with bad performance.
Nonetheless, the minimum losses of weighted versus unweighted shows that there is a lot of potential
for this method.

4.4 Backtracking vs Non-Backtracking Random Walk

In this subsection, we compare the performance of random walks with and without backtracking. As
mentioned earlier, backtracking allows the random walk to revert to the previous product manifold if
a step leads to a decrease in performance, mimicking the behavior of stochastic gradient descent. On
the other hand, non-backtracking random walks continue exploring the graph search space without
the ability to retrace their steps.

In Figure 4e, we can clearly see the backtracking approach performed better when we consider
the minimum losses. As a result, it is very possible the graph search space may be monotically
decreasing towards the minimum. With more iterations, it is possible for the backtracking approach
to theoretically outperform the naive method even more.

5 Conclusion

In this project, we implemented the neural latent geometry search (NLGS) algorithm, as described by
Sáez de Ocáriz Borde et al. [2024], and conducted experiments on MNIST. Our approach involved
searching over a graph defined by product manifolds, projecting the latent vectors of autoencoders
onto these manifolds, and minimizing the reconstruction loss using random walks.

The key findings of our experiments demonstrate that geometry-informed graphs, with edge weights
based on the inverse Gromov-Hausdorff distance, generally perform similarly to unweighted graphs
(though potentially limited by the available computational power). Furthermore, backtracking random
walks consistently achieve superior performance compared to non-backtracking, naive random walks.
These results highlight that there is potential importance in considering the geometric structure of the
latent space when designing and optimizing neural networks.

However, the current NLGS framework has certain limitations. It is restricted to considering only
product manifolds of constant curvature model spaces as the latent space manifolds. Additionally,
the exponential growth of the graph search space, coupled with the expensive objective function
evaluation, limits the method’s applicability to small latent space dimensions. The extra performance
gains may not justify the significant increase in time and complexity of the method, indicating that it
is not yet ready for practical use.

To address these limitations and further advance the field of NLGS, several research directions
can be explored. Investigating the impact of enforcing latent geometries on different tasks may
lead to improved representations across a wide range of applications. Future work should focus on
alleviating the combinatorial explosion of the graph search space or developing principled heuristics
for identifying fruitful regions within it. Approximating the performance metric with heuristics such
as the speed of initial convergence could also be considered. Moreover, enhancing the graph search
process with geometrically-aware optimization algorithms is another promising avenue for future
research.

Our work provides an initial attempt to understand the geometry of the space of product manifolds
from a spectral clustering perspective through the use of random walks. We applied this method to
improve the performance of autoencoders and introduced and experimented with different random
walk techniques on the graph search space. While this approach requires further development before
it becomes practically useful, it represents a solid foundation for an intriguing endeavor to enhance
deep learning in a theoretically principled manner.

10

References
S.-i. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):

185–196, 1993.

S. Andradóttir. A method for discrete stochastic optimization. Management Science, 41(12):1946–
1961, 1995.

L. J. Billera, S. P. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees. Advances
in Applied Mathematics, 27(4):733–767, 2001.

A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a
framework for isometry-invariant partial surface matching. Proceedings of the National Academy
of Sciences, 103(5):1168–1172, 2006.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

C. Chadebec and S. Allassonnière. A geometric perspective on variational autoencoders. Advances
in Neural Information Processing Systems, 35:19618–19630, 2022.

H. S. de Ocariz Borde, A. Arroyo, I. Morales, I. Posner, and X. Dong. Gromov-hausdorff distances
for comparing product manifolds of model spaces, 2023.

L. Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

C. Ding, X. He, H. Zha, M. Gu, and H. Simon. Spectral min-max cut for graph partitioning and data
clustering. 2001.

Y. Fei, X. Wei, Y. Liu, Z. Li, and M. Chen. A survey of geometric optimization for deep learning:
From euclidean space to riemannian manifold. arXiv preprint arXiv:2302.08210, 2023.

P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

F. Göbel and A. Jagers. Random walks on graphs. Stochastic processes and their applications, 2(4):
311–336, 1974.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

S. Hauberg, O. Freifeld, and M. Black. A geometric take on metric learning. Advances in Neural
Information Processing Systems, 25, 2012.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006.

P. Jawanpuria, A. Balgovind, A. Kunchukuttan, and B. Mishra. Learning multilingual word em-
beddings in latent metric space: a geometric approach. Transactions of the Association for
Computational Linguistics, 7:107–120, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

J. M. Lee and J. M. Lee. Smooth manifolds. Springer, 2012.

M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical representations. CoRR,
abs/1705.08039, 2017. URL http://arxiv.org/abs/1705.08039.

D. C. Plaut and G. E. Hinton. Learning sets of filters using back-propagation. Computer Speech &
Language, 2(1):35–61, 1987.

R. Rabadán and A. J. Blumberg. Topological data analysis for genomics and evolution: topology in
biology. Cambridge University Press, 2019.

11

http://arxiv.org/abs/1705.08039

H. Sáez de Ocáriz Borde, A. Arroyo, I. Morales, I. Posner, and X. Dong. Neural latent geome-
try search: Product manifold inference via gromov-hausdorff-informed bayesian optimization.
Advances in Neural Information Processing Systems, 36, 2024.

A. Shukla, S. Uppal, S. Bhagat, S. Anand, and P. Turaga. Geometry of deep generative models for
disentangled representations. In Proceedings of the 11th Indian Conference on Computer Vision,
Graphics and Image Processing, pages 1–8, 2018.

L. N. Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch
size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

M. Stephan, M. D. Hoffman, D. M. Blei, et al. Stochastic gradient descent as approximate bayesian
inference. Journal of Machine Learning Research, 18(134):1–35, 2017.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

12

	Introduction
	Background
	Product Manifolds
	Gromov-Haustorff Distance

	Method
	Enforcing Latent Geometry
	Defining Graph Search Space
	Searching over Graph Search Space

	Experiments
	Model Architecture
	MNIST
	Unweighted vs Inverse dGH-Weighted Random Walk
	Backtracking vs Non-Backtracking Random Walk

	Conclusion

